Mechanical Ventilation Basics

ventilator

Volume control (VC) and pressure control (PC) are two common modes of positive pressure mechanical ventilation. In VC, the clinician sets the tidal volume that is given for every breath; pressure is allowed to vary over the course of the breath. In PC, the ventilator is programmed to deliver the same pressure throughout inspiration, so tidal volume is allowed to vary based on the pressure and timing settings, as well as the patient’s own lung compliance.

The timing of ventilation can be set according to a trigger. Continuous mandatory ventilation (CMV) involves setting the respiratory rate and having the ventilator deliver breaths at exactly that rate. This is generally used in paralyzed patients (e.g., general anesthesia), where the patient is not expected to trigger any breaths. In Synchronized Intermittent Mandatory Ventilation (SIMV), mandatory breaths are still given but they are synchronized to the patients’ own respiratory efforts (if present). Also, the patient is allowed to take additional breaths on their own. SIMV is often used to wean patients from the ventilator, by decreasing the rate of mandatory breaths and having patients take more of their breaths spontaneously.

Pressure support (PS) is another mode that is used for weaning. No mandatory breaths are programmed. The patient actively takes their own breaths, and the ventilator simply gives an additional boast of inspiratory pressure to help them out.

Positive End Expiratory Pressure (PEEP) is a setting that is used to prevent alveolar collapse, increase functional residual capacity, and generally improve gas exchange. PEEP involves programming a small amount of additional airway pressure (often ~5-10 cmH2O) to be present at the end of expiration.

  • Nugent K, Nourbaksh E (Eds.). 2011. A bedside guide to mechanical ventilation. Createspace.
  • Owens W. 2012. The ventilator book. First Draught.
  • Kacmarek RM, Hess DR. 2008. Mechanical ventilation for the surgical patient. In: Anesthesiology (Longnecker DE, Brown DL, Newman MF, Zapol WM, Eds.). McGraw Hill, New York.

 

Pierre-Robin Sequence

pierre-robin-sequence

Pierre-Robin Sequence is not a syndrome, it’s a sequence. While it is a collection of features, one happens because of the one that came before.

The features are:

  • Retrognathia/micrognathia (posterior mandible or very small mandible)
  • Glossoptosis (downwards/posterior displacement of the tongue due to the small mandible
  • Airway obstruction (because the tongue is in the way)

Pierre-Robin Sequence is associated with cleft palate (50% of children with the sequence have cleft palate). There are two proposed theories:

  1. The first is that the tongue simply gets in the way of the palate from fusing
  2. The second is that the tongue prevents the newly fused palate from staying fused (this is currently the more popular theory)

PRS, though not a syndrome itself, is associated with multiple syndromes including Stickler Syndrome, velocardiofacial syndrome, fetal alcohol syndrome and Treacher Collins Syndrome.

PHACE Syndrome (hemangiomas)

PHACE_syndromeThere are no shortage of congenital syndromes that are acronyms arranged into some sort of vaguely pronounceable word. There will be lots of doodles about these, but we’ll start off with a more uncommon one – PHACE Syndrome.

PHACE Syndrome is a collection of findings that go along with large infantile hemangiomas. They’re the more worrisome (but less obviously disfiguring) things you need to look for when you see a baby with a large hemangioma on the face or multiple hemangiomas.

  • Posterior fossa brain malformations
  • Hemangiomas
  • Arterial anomalies
  • Cardiac anomalies and coarctation of the aorta
  • Eye abnormalities
  • Sternal cleft

The most common symptom of PHACE is cerebrovascular abnormalities, followed by cardiac anomalies (coarctation, aortic arch anomalies, VSDs). If you suspect PHACE, do clinical exam of the skin and eyes and MRI of the head, neck and chest.

Other cool facts

  • PHACE occurs in full-term normal birth weight infants (other hemangiomas tend to occur in preterm infants)
  • Quite common, more girls than boys (8:1)
  • Don’t confuse it with Strurge-Weber (port wine stain, associated with the facial dermatomes)
    • Port wine stains don’t proliferate and then regress like an infantile hemangioma

Complex Regional Pain Syndrome

crps

Hypo/Hyperalgesia:Decreased/increased sensitivity to a usually-painful stimulus (e.g., pinprick).
Hypo/Hyperesthesia: Decreased/increased sensation to a usually-innocuous stimulus (e.g., light touch).
Allodynia: Sensation of pain from a usually-innocuous stimulus (e.g., light touch).

Complex Regional Pain Syndrome (CRPS) refers to a chronic neuropathic pain condition with a broad and varied range of  clinical presentations. CRPS patients experience severe pain out of proportion to their original injury, and this may start at the time of injury or weeks later. The pain is described as deep-seated and burning/aching/shooting. Sesnory changes are common, including hypo/hyperesthesia, hypo/hyperalgesia, and allodynia. For instance, many patients describe not being able to tolerate the sensation of bedsheets on their painful limb.

In the affected area, there is often marked edema, temperature asymmetry (usually cooler), and sweating changes (usually increased). Loss of hair and nail growth is common, and disuse of the limb can result in weakness, muscle atrophy, and contractures.

The diagnosis is made clinically, using the Budapest Criteria. Some pain physicians use a nuclear medicine test, three-phase bone scintigraphy, for CRPS diagnosis but this test is becoming less popular, since it has a low positive predictive value.

Budapest Criteria

  1. Pain, ongoing and disproportionate to any inciting event
  2. Symptoms: at least one symptom in three of the four categories:
    • Sensory: reports of hyperesthesia and/or allodynia
    • Vasomotor: reports of temperature asymmetry and/or skin color changes and/or skin color asymmetr
    • Sudomotor/edema: reports of edema and/or sweating changes and/or sweating asymmetry
    • Motor/trophic: reports of decreased range of motion and/or motor dysfunction (weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)
  3. Physical Signs: at least one sign at time of evaluation in two or more categories:
    • Sensory: evidence of hyperalgesia (to pinprick) and/or allodynia (to light touch and/or deep somatic pressure and/or 
joint movement)
    • Vasomotor: evidence of temperature asymmetry and/or skin color changes and/or asymmetry
    • Sudomotor/edema: evidence of edema and/or sweating changes and/or sweating asymmetry
    • Motor/trophic: evidence of decreased range of motion and/or motor dysfunction (weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)
  4. No other diagnosis better explains the signs and symptoms

CRPS is classified as Type I when there is no apparent history of nerve damage, and Type II when associated with definite peripheral nerve injury. CRPS most commonly occurs following fractures and immobilization, but can happen even with little to no trauma.The pathophysiology is thought to involve autonomic dysfunction and inflammation, but much is still unknown.

CRPS affects females about 2-4 times more often than males, and onset is usually in middle age (though there are rare pediatric cases reported). It is a progressive disease that can result in spread of pain, sensory disturbances, and physical changes to other limbs.

Treatment for CRPS may involve physiotherapy, complementary medicine (e.g., acupuncture, qi gong) psychological therapies, and a variety of pharmacologic (e.g., NSAIDs, anticonvulsants, antidepressants, opioids, ketamine, bisphosphonates) and interventional procedures (nerve blocks, sympathectomy, neurostimulators). As with all things CRPS, there isn’t great evidence for any particular intervention.

  • Harden RN, Bruehl S, Perez RSGM, Birklein F, Marinus J, Maihofner C, Lubenow T, Buvanendran A, Mackey S, Graciosa J, Mogilevski M, Ramsden C, Chont M, Vatine J-J. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for Complex Regional Pain Syndrome. Pain; 150:268.
  • Hord E-D. Complex regional pain syndrome. In: Massachusetts General Hospital Handbook of Pain Management (Eds: Ballantyne JC, Fields HL). Lippincott Williams & Wilkins.
  • Moon JY, Park SY, Kim YC, Lee SC, Nahm FS, Kim H, Oh SW. 2012. Analysis of  patterns of three-phase bone scintigraphy for patients with complex regional pain syndrome diagnosed using the proposed research criteria (the ‘Budapest Criteria’). British Journal of Anesthesia; 108:655.
  • O’Connell NE, Wand BM, McAuley J, Marston L, Moseley GL. Interventions for treating pain and disability in adults with complex regional pain syndrome – an overview of systematic reviews. Cochrane Database of Systematic Reviews; 4:CD009416.
  • Schwartzman RJ, Erwin KL, Alexander GM. 2009. The natural history of complex regional pain syndrome. Clinical Journal of Pain; 25:273.
  • Smith H, Popp AJ. The patient with chronic pain syndromes. In: A Guide to the Primary Care of Neurological Disorders (Eds: Popp AJ, Deshaies EM). Thieme.
  • Tran DQH, Duong S, Bertini P, Finlayson RJ. Treatment of complex regional pain syndrome: a review of the evidence. Canadian Journal of Anesthesiology; 57:149.

Monitoring Neuromuscular Blockade

nmb

As mentioned in a previous post, neuromuscular blocking drugs are used in anesthesia to ensure paralysis during surgery. The degree of neuromuscular block is assessed using nerve stimulation, where two electrodes impose a pulse of current on a peripheral nerve (e.g., ulnar n., facial n., posterior tibial n.) and induce muscle twitches which can then be monitored through the surgery. There are a few different ways to do nerve stimulation :

Tetany: A sustained stimulation (5 s)
Train-of-four (TOF): Four pulses in rapid succession
Double-burst stimulation (DBS): A series of 3 pulses followed after a pause by 2 or 3 pulses.
Post-tetanic potentiation: When a pulse is sent after a tetanic stimulation, it will bring on a stronger twitch than at first.

With non-depolarizing muscle blockers, there is a fade phenomenon where twitch amplitude decreases from the first stimulation. For instance, in a TOF each twitch is weaker than the last; the last twitch is the first to disappear with non-depolarizing blockade, while the first twitch is the last to disappear. This non-depolarizing fade is also seen in DBS and tetany, though there is still post-tetanic potentiation.

With a depolarizing muscle blockade, no fade will be seen. Instead, all twitches in response to stimulation will be uniformly decreased, and there is no post-tetanic potentiation. This pattern is known as a Phase I block. But, if there is a ton of succinylcholine or the blockade is of a long duration, the pattern of response will look like a non-depolarizing block. This would be a Phase II block.

Recovery of neuromuscular function
Throughout a surgery, the TOF ratio is often mentioned as a means of assessing neuromuscular blockade on an ongoing basis. This means dividing the amplitude of the fourth (and most influenced  by neuromuscular blockers) twitch in a TOF by the amplitude of the first (which is the least affected). In normal people, the 4:1 amplitude is the same, for a TOF ratio of 1. In a Phase I depolarizing block, the TOF ratio is also 1. The TOF ratio will be less than 1 in a non-depolarizing block (remember the fade?). It is commonly mentioned that a TOF ratio of 0.7 represents an full recovery of neuromuscular function, but these days it is thought that a TOF ratio of at least 0.9 is needed before extubation.

It is very hard to tell what the TOF ratio is by sight or feel alone! DBS ratio is more sensitive than TOF ratio for assessing neuromuscular block, and it’s easier to gauge by tactile evaluation than the TOF ratio. So, quantitative monitoring by electomyography (EMG), mechanomyography (MMG), or accelerometry is ideal!

  • Fuchs-Buder T. 2010. Neuromuscular monitoring in clinical practice and research. Springer.
  • McGrath CD, Hunter JM. 2006. Monitoring of neuromuscular block. Continuing Education in Anesthesia, Critical Care & Pain; 6:7.
  • Neuromuscular blocking agents. 2006. In: Clinical Anesthesiology (Eds: Morgan GE, Mikhail MS, Murray MJ). Lange.
  • Viby-Mogensen J. 2005. Neuromuscular monitoring. In: Miller’s Anesthesia (Eds: Miller RD, Erikkson LI, Fleisher LA, Wiener-Kronish JP, Young WL). Elsevier.

Approach to Primary Amenorrhea

amenorrhea---primary

Primary Amenorrhea is defined as the absence of menses:

  • By age 13/14 without normal development of secondary sexual characteristics; OR,
  • By age 15/16, with normal secondary sexual characteristics.

In contrast, Secondary Amenorrhea refers to a loss of menses after it has already been established.

The causes of amenorrea are myriad, with an important one being pregnancy.

Causes of Amenorrhea
Hypothalamus Stress, malnutrition, exercise, lactation, immaturity, Kallmann syndrome
Pituitary Tumor, empty sella, apoplexy, hyperprolactinemia/prolactinoma
Ovaries Gonadal dysgenesis, premature ovarian failure, menopause, ovarian tumor, polycystic ovarian syndrome (PCOS), ovarian enzyme deficiency, chromosomal abnormalities (e.g., 45XO)
Uterus Intrauterine scarring, cervical agenesis, androgen insensitivity
Outflow Tract Imperforate hymen, transverse vaginal septum, cervical stenosis, Mullerian agenesis
Thyroid Hypo/hyperthyroidism
Pregnancy
Other Constitutional delay of puberty, hyperandrogenism, Cushing’s syndrome, medications

The most common pathologic causes of Primary Amenorrhea are:

  • Chromosomal abnormalities: 50%
  • Hypothalamic abnormalities: 20%
  • Mullerian agenesis: 5%
  • Pituitary abnormalities: 5%

Determining the etiology of Primary Amenorrhea depends on careful history-taking and a targeted physical exam. Key points to address in the history include:

  • Potential for pregnancy, current lactation
  • Develop of secondary sexual characteristics
    • On a side note, the general order of female sexual development is: breasts, pubic hair, growth spurt, menses; or, “boobs, pubes, grow, flow”
  • Lifestyle factors such as stress, nutrition, exercise, weight changes
  • Medication: THC, antipsychotics, or irradiation
  • Associated symptoms:
    • Hyperprolatinemia: galactorrhea
    • Hyperandrogenism: hair loss/excess, acne, voice change
    • CNS tumor: headaches, visual field deficits, polyuria/polydipsia
    • Family history: Does everyone have relatively late puberty?

In terms of physical exam:

  • Vitals, height, weight
  • Secondary sexual characteristics: breasts, pubic/axillary hair
  • Thyroid: exopthalmos, goiter, abnormal deep tendon reflexes
  • Hyperandrogenism: hirsuitism, acne, hair loss
  • Hypercortisolemia: striae, hyperpigmentation
  • Turner syndrome: webbed neck, low hair line, widely-spaced nipples, short stature
  • Pelvic exam: hymen, vaginal septum, ultrasound for uterine anatomy

Laboratory investigations can offer lots of insight:

  • βHCG: Gotta rule out this common reason first!
  • TSH, PRL: To test for hypo/hyperthyroidism and hyperprolactinemia.
  • LH, FHS: For practicality’s sake, these would probably be ordered at the same time as TSH, PRL.
  • +/- Androgens (testosterone, DHEAS, 17-alpha-hydroxyprogesterone): May indicate PCOS or androgen-secreting tumor, androhen insensitivity syndrome, or 5-alpha-reductase deficiency.
  • +/- Estradiol: These assays lack sensitivity, standardization, and only capture a single time point.

Since chromosomal abnormalities account for half of the pathologic cases of Primary Amenorrhea, karyotyping will be useful for patients who are found to have abnormal uterine anatomy on ultrasound or have elevated FSH, LH. Patients with an absent uterus may be worked-up for abnormal Mullerian development (46XX karyotype and normal female testosterone levels) versus a deficit in masculinization (i.e., androgen insensitivity syndrome, 5-alpha-reductase deficiency). There is a normal uterus, and LH and FSH are high, that means there is nothing feeding back to stop their release; karyotype may reveal Turner syndrome (45XO), while normal karyotype (46XX) may indicate Mullerian agenesis.

The over all treatment goals are to:

  • Treat underlying cause:
    • Lifestyle
    • Discontinue offending medications
    • Surgery
  • Preserve fertility
  • Reduce risk of complications (e.g., remove undescended tests in androgen insensitive patients to mitigate cancer risk).
  • Master-Hunter T, Heiman DL. 2006. Amenorrhea: evaluation and treatment; 73:1374.
  • The Practice Committee of the American Society for Reproductive Medicine. 2008. Current approach to amenorrhea. Fertility and Sterility;90:S219.
  • Welt CK, Barieri RL. Etiology, diagnosis, and treatment of primary amenorrhea. In: UpToDate (Eds: Snyder PJ, Crowley Jr WF, Kirkland JL). Accessed 2013.05.05.

Acute Limb Ischemia

acute limb ischemia

Acute limb ischemia is a sudden decrease in limb perfusion that can potentially threaten limb viability, in patients presenting within 2 weeks of symptom onset (it is considered chronic if more than 2 weeks have passed). The common causes of limb ischemia are:

  • Arterial embolism (80% of cases)
  • Thrombus (usually from site of atherosclerotic plaque)
  • Arterial trauma (e.g., after interventional catheterization procedures)

The symptoms can come on over a period of hours or days. It is important to recognize this condition, in order to improve the chance of limb preservation. Acute limb ischemia is characterized by the 6 P’s:

  • Pain
  • Paresthesia
  • Polar/Poikylothermia (affected extremity is cool on palpation)
  • Pallor
  • Paralysis
  • Pulselessness

If no pulse is palpable, then assessment of perfusion with a Doppler ultrasound is the next step. Note that acutely ischemic limbs may not always appear pale; the extremity may progress to a blue or mottled appearance as the ischemia continues. The most reliable symptoms are paresthesias, which will progress to complete loss of sensation, and paralysis, which may indicate the limb is no longer viable.

Once acute limb ischemia is identified, intravenous heparin is administered. Surgical or endovascular revascularization is the definitive treatment for acute limb ischemia, though these interventions should be performed within 6 hours of symptom onset to improve the probability of limb salvage.

  • Callum K and Bradbury A. 2000. ABC of arterial and venous disease: acute limb ischemia. British Medical Journal; 320:764.
  • Creager MA, Kaufman JA, and Conte MS. 2012. Acute limb ischemia. New England Journal of Medicine; 366:2198.
  • Mitchell ME, Mohler III ER, and Carpenter JP. Acute arterial occlusion of the lower extremities (acute limb ischemia). In: Uptodate (Eds: Clement DL, Hoekstra J, and Collins KA). Accessed 2013.08.24.

 

BOOTS: Predictors of Difficult Bag Mask Ventilation

boots

Bag mask ventilation (BMV) is an important means of ventilating and oxygenating a patient unable to protect their airway, or in respiratory depression. BMV can be useful as a primary airway management modality in a prehospital setting, and it is also a useful rescue maneuver for cases of  difficult endotracheal intubation.

The following patient features, however, will make BMV difficult; this can be remembered with the helpful mnemonic BOOTS:

  • Beard
  • Obese
  • Old Age
  • Toothless
  • Snores

Essentially, BMV can be complicated any condition that impairs formation of an effective mask seal.  Beards can make establishing an adequate seal difficult, as can any disruption of normal facial anatomy (no teeth, facial fractures, excess facial tissue). Individuals aged over 55 years old are considered to be higher risk for BMV, in part because of decreased upper airway muscle tone. Patients should be screened for obstructive sleep apnea before an elective surgery; also, note that conditions increasing airway resistance (e.g., severe asthma) or decreasing pulmonary compliance (e.g., pulmonary edema) can make ventilation challenging.

  • Hung O and Murphy MF (Eds). 2008. Management of the difficult and failed airway. McGraw-Hill.
  • Kovacs G and Law JA (Eds). 2011. Airway management in emergencies. People’s Medical Publishing House-USA.

Severity (Classification) of Burns

burn_depth

Burns are typically classified by their depth into (or through) the skin.

  1. 1st degree: just in the epidermis
    • Pink, hot, no blisters
    • Like a typical sunburn
  2. 2nd degree: into dermis, painful, wet
    • Superficial: unruptured blisters, hair & glands spared, erythematous (red) but blanch with pressure
    • Deep: ruptured blisters, hair often gone, can convert to a 3rd
  3. 3rd degree: through the dermis aka full thickness
    • Lack vascularization, dry, leathery, no sensation

Zones of a Burn

A burn isn’t a homogenous spot on the skin; more heat means more damage (who knew!)

  • 40 – 44 C: enzymes malfunction, protein denature
  • >44 C: damage occurs faster than the cell can handle
  • Damage keeps going after the heat source is removed
  1. Zone of Coagulation: The cells are dead and their proteins have denatured. Denatured proteins coagulate – think fried eggs. This is what forms the eschar of the burn.
  2. Zone of Stasis: The cells aren’t quite dead but the blood supply isn’t the best. If the circulation gets worse (usually due to vessel constriction and thrombosis) the cells in this area will die too. This is why it can take a couple days for a burn to “declare” itself.
  3. Zone of Hyperemia: “Hyperemia” means an increase in blood flow, in this case because of vasodilation. The cells in this area are alive and generally recover.

The image above shows a superficial 2nd degree burn. 

The Standard Drink

standard_drink

A “standard drink” is a measure of pure ethanol consumed. One standard drink represents 10 grams of pure ethanol.

This means that based on the alcohol percentage of certain drinks, the “standard” size changes. The important thing to be aware of is to think of it as a Standard Drink because the size that equals 10 g of ethanol isn’t necessarily the standard size that is served. This is why it’s a good habit when asking “how many glasses of _______ do you drink” to ask about the size of the glass.

This design was actually originally made for an event, but I’m reposting it here because it’s useful and I like it and I haven’t had a chance to draw anything new recently.

Related Posts Plugin for WordPress, Blogger...