Tumescent Solution (for burn surgery and liposuction and other things too)


Tumescent solution is also called “Klein’s Solution” after the physician who characterized the recipe and the use of it.

It’s called “tumescent” because it makes things tumescent, which is a fancy word for swollen. Tumescent is a dilute solution of lidocaine, epinephrine, and sodium bicarbonate that is injected in the subcutaneous tissue (fat). The epinephrine is the most important ingredient as it causes vasoconstriction, this means that the blood loss that could be a big problem for large procedures like burn surgery and liposuction becomes much less of a big deal.

The other interesting thing is that since fat is relatively avascular compared to other tissues, the “safe amount” of tumescent is much higher than what is normally stated for injections of lidocaine or epinephrine.

For example, it was reported by Klein that the toxic dose of lidocaine for tumescent solution is 35 mg/kg of body weight.

There are a few different recipes for tumescent anesthesia, the one presented in the doodle is the one first outlined by Klein, some use more or less lidocaine or epinephrine.


  1. Kucera IJ1, Lambert TJ, Klein JA, Watkins RG, Hoover JM, Kaye AD. Liposuction: contemporary issues for the anesthesiologist. J Clin Anesth. 2006, 18(5): 379-87.
  2. Klein JA. The tumescent technique. Anesthesia and modified liposuction technique. Dermatol Clin. 1990, 8(3): 425-37.
  3. Klein JA. Tumescent technique for local anesthesia improves safety in large-volume liposuction. Plast Reconstr Surg. 1993, 92: 1085-100.

Monitoring Neuromuscular Blockade


As mentioned in a previous post, neuromuscular blocking drugs are used in anesthesia to ensure paralysis during surgery. The degree of neuromuscular block is assessed using nerve stimulation, where two electrodes impose a pulse of current on a peripheral nerve (e.g., ulnar n., facial n., posterior tibial n.) and induce muscle twitches which can then be monitored through the surgery. There are a few different ways to do nerve stimulation :

Tetany: A sustained stimulation (5 s)
Train-of-four (TOF): Four pulses in rapid succession
Double-burst stimulation (DBS): A series of 3 pulses followed after a pause by 2 or 3 pulses.
Post-tetanic potentiation: When a pulse is sent after a tetanic stimulation, it will bring on a stronger twitch than at first.

With non-depolarizing muscle blockers, there is a fade phenomenon where twitch amplitude decreases from the first stimulation. For instance, in a TOF each twitch is weaker than the last; the last twitch is the first to disappear with non-depolarizing blockade, while the first twitch is the last to disappear. This non-depolarizing fade is also seen in DBS and tetany, though there is still post-tetanic potentiation.

With a depolarizing muscle blockade, no fade will be seen. Instead, all twitches in response to stimulation will be uniformly decreased, and there is no post-tetanic potentiation. This pattern is known as a Phase I block. But, if there is a ton of succinylcholine or the blockade is of a long duration, the pattern of response will look like a non-depolarizing block. This would be a Phase II block.

Recovery of neuromuscular function
Throughout a surgery, the TOF ratio is often mentioned as a means of assessing neuromuscular blockade on an ongoing basis. This means dividing the amplitude of the fourth (and most influenced  by neuromuscular blockers) twitch in a TOF by the amplitude of the first (which is the least affected). In normal people, the 4:1 amplitude is the same, for a TOF ratio of 1. In a Phase I depolarizing block, the TOF ratio is also 1. The TOF ratio will be less than 1 in a non-depolarizing block (remember the fade?). It is commonly mentioned that a TOF ratio of 0.7 represents an full recovery of neuromuscular function, but these days it is thought that a TOF ratio of at least 0.9 is needed before extubation.

It is very hard to tell what the TOF ratio is by sight or feel alone! DBS ratio is more sensitive than TOF ratio for assessing neuromuscular block, and it’s easier to gauge by tactile evaluation than the TOF ratio. So, quantitative monitoring by electomyography (EMG), mechanomyography (MMG), or accelerometry is ideal!

  • Fuchs-Buder T. 2010. Neuromuscular monitoring in clinical practice and research. Springer.
  • McGrath CD, Hunter JM. 2006. Monitoring of neuromuscular block. Continuing Education in Anesthesia, Critical Care & Pain; 6:7.
  • Neuromuscular blocking agents. 2006. In: Clinical Anesthesiology (Eds: Morgan GE, Mikhail MS, Murray MJ). Lange.
  • Viby-Mogensen J. 2005. Neuromuscular monitoring. In: Miller’s Anesthesia (Eds: Miller RD, Erikkson LI, Fleisher LA, Wiener-Kronish JP, Young WL). Elsevier.

The 6 Hs of Pulseless Electrical Activity (PEA)


When you find someone without a pulse but then hook up the monitor and there is a rhythm, your first thought it probably “CRAP!” But as you start CPR, you need to be thinking about what caused it because not much will help the person except correcting the underlying problem.

So like most of medicine, there is a handy mnemonic for remembering the main causes: The 6 Hs and 5Ts

The 6 Hs

  1. Hypoglycemia
  2. H+ (acidosis)
  3. Hyperkalemia/Hypokalemia (potassium disturbances only get counted once)
  4. Hypovolemia
  5. Hypoxia
  6. Hypothermia

The 5 Ts

  1. Trauma
  2. Tension pneumothorax
  3. Tamponade
  4. Toxins
  5. Thrombosis

(I’ll make a T doodle at a later date)

The other handy mnemonic for the Hs I learned from this video (so I take no credit for it)Diabetic crashing with a wide QRS

  • Diabetic = Hypoglycemia or H+ acidosis
  • Crashing = bad vitals
    • Low BP +/- tachycardia (hypovolemia)
    • Low O2 (hypoxia)
    • Low temperature (hypothermia)
  • Wide QRS = hyperkalemia

Induction Agents in Anesthesia

General anesthesia has a bunch of different steps:

  1. Pre-oxygenation/Pre-induction (some people don’t count this as a step)
  2. Induction (putting them “to sleep”)
  3. Maintenance (keeping them asleep)
  4. Emergence (waking them up)

In North America, many physicians like to use a combination of an analgesic and a sedative followed by the induction agent propofol. Sometimes other agents are used for induction such as etomidate or ketamine, particularly if there is a worry about hemodynamic instability as propofol not uncommonly can cause bradycardia and/or hypotension.

If the patient is going to be intubated, a paralytic (muscle relaxant) is also used to relax the vocal cords to prevent unnecessary trauma as the tube is passed through them. Competitive acetyl choline (ACh) receptor antagonists such as rocuronium or succinylcholine are used for this. The main difference between the two is that succinylcholine is a depolarizing agent – meaning that when it first binds to the ACh receptor, it causes a contraction, whereas rocuronium is non-depolarizing – so when it binds nothing happens. So with this pesky contraction thing why would any one choose succinylcholine? The nice thing is that the half-life is much much shorter than rocuronium, so if things don’t work out quite the way you want them to, or you just want something fast, you don’t need to continue to help the patient breath.



Shock is “a syndrome resulting from failure of the cardiovascular system to maintain adequate tissue perfusion.”

Weil-Shubin Classification of Shock

  1. Cardiogenic –  Poor cardiac function reduces forward blood flow.
  2. Hypovolemic – Loss of intravascular volume caused by: hemorrhage, dehydration, third space loss, vomiting, diarrhea.
  3. Obstructive – Impair cardiac filling due to external restriction. Caused by cardiac tamponade, tension pneumothorax, pulmonary embolus.
  4. Distributive – Primarily characterized by loss of peripheral vascular tone. Caused by septic, anaphylactic, adrenal insufficiency, neurogenic, liver failure.

Adrenergic Receptors

  • α1: Vasoconstriction
  • α2: Inhibits norepinephrine release, decreases BP, sedative effects
  • β1: Positive inoptrope (increases cardiac contractility and stroke volume)
  • β2: Vasodilation, broncodilation

Vasoactive Drugs


  • Effects: Causes vasoconstriction and increases cardiac output. Inotrope effect predominates at low doses (< 4.0 mcg/min).
  • Disadvantages: Associated with lactic acidosis, hyperglycemia, pulmonary hypertension, tachyarrythmias, and compromised hepatosplanchnic perfusion.
  • Use: First-line agent for cardiac arrest and anaphylaxis. Second-line agent for vasopressor and inotrope effects, when other agents have failed.


  • Effects: Potent vasoconstrictor. Causes a minor increase in stroke volume and cardiac output.
  • Disadvantages: May decrease renal blood flow and increase myocardial oxygen demand. Extravasation at site of intravenous administration may lead to tissue necrosis.
  • Use: First line therapy for maintenance of blood pressure.


  • Effects: Increases heart rate, cardiac output. Bronchodilator. Some anti-emetic effects. Longer duration than epinephrine. Has indirect actions on adrenergic system.
  • Disadvantages: Epedrine losses effect with subsequent doses since part of its effect is indirect, by icreasing NE release, which becomes depleted
  • Use: Common vasopressor during anesthesia, but only a temporizing agent in acute shock.


  • Effects are dose-dependent:
    • < 5 mcg/kg/min – Acts at dopamine receptors only, with mild inotrope effect. Vasodilatory effects purported to improve perfusion through renal and mesenteric vessels; however, there is no clear clinical benefit of dopamine on organ function.
    • 5-10 mcg/kg/min – Predominantly β1 adrenergic effects. Increases cardiac contractility and heart rate.
    • >10 mcg/kg/min – Predominately α1 effects, causing arterial vasoconstriction and increased blood pressure. Overall decrease in renal and splanchnic blood flow at this dose.
  • Disadvantages: Has a high propensity for tachycardia and dysrythmias. Potential for prolactin suppression and immunosuppression.
  • Use: First line vasopressor for shock, but may be associated with more adverse outcomes than norepinephrine.


  • Effects: Racemic mixture. where the L-isomer acts at α1/β1 receptors and D-isomer acts at β1/β2 receptors. Increases cardiac output and decreases systemic/pulmonary cascular resistance. Can increase splanchnic blood flow and decrease endogenous glucose production.
  • Disadvantages: May cause mismatch in myocardial oxygen delivery and requirement. Vasodilation undesirable in septic patients.
  • Use: A ‘gold standard‘ inotropic agent in cardiogenic shock with low output and increased afterload. In sepsis, vasodilatory effects should be counteracted by co-administration with norepinephrine.


  • Effects: Acts at β2 and dopamine receptors. Causes vasodilation and decreased afterload. Has some positive inotrope effect. Bronchodilatory. Unlike dopamine, dopexamine is not associated with pituitary suppression.
  • Disadvantages: Not widely accepted in practice.
  • Use: Like dobutamine, useful for cardiogenic shock with decreased output and high afterload.


  • Effects: Classic selective α1 agonist, causing vasoconstriction. Rapid onset and short duration.
  • Disadvantages: Can reduce hepatosplanchnic perfusion. May cause significant reflex bradycardia.
  • Use: Generally considered a temporary vasopressor until more definitive therapy is begun. Useful for vasdilated patients with adequate cardiac output, for whom other vasopressors present risk of tachyarrhythmias.


  • Effects: Arousable sedation with preserved respiratory drive. Improved tissue perfusion and renal function. General sympathetic inhibition.
  • Disadvantages: Bradycardia and hypotension.
  • Use: Not used in acute shock setting, but may be useful in later critical care setting.

Vasopressin (not actually an adrenergic drug)

  • Effects: Acts on V1 receptors to cause vasoconstriction. Increases vasculature response to catecholamines.
  • Disadvantages: May cause tachycardia and tachyarrythmias. Excessive vasoconstriction can impair oxygen delivery and and cause limb ischemia.
  • Use: May be used to augment norepinephrine or other agents. Not typically used alone.

Femoral Triangle

The femoral triangle is a convenient triangle where the femoral nerve, artery and vein pass from the abdomen to the leg. The best part about this is that they’re all quite superficial, making it a great place to stick things in (place catheters, nerve blocks, etc).

Because the femoral triangle is often getting poked at for various reasons, it’s important to know what’s where because you don’t want to be hitting the nerve when you meant for the artery (or vice versa).

The triangle is made up by the sartorius, adductor longus and inguinal ligament and if you just remember NAVVAN.

Local Anesthetics and Freezing Fingers

Local anesthetics work by blocking afferent pain sensation. This is great because it means that the patient can be wide awake and not able to feel you reduce their fracture, sew up their gaping laceration or release their carpal tunnel.

Most local anesthetics fall into two broad categories, the esters and the amides. To remember which is which, think about amIdes having an I in the prefix and esters not.

Amides Esters
Lidocaine (Xylocaine)
Procaine (Novocaine)

Epinephrine can be added to local anesthetics to induce vasoconstriction. This reduces blood loss and prevents excess systemic spread of the anesthetic. As a result, the maximum dose and the duration of action are less without epi than with.

Duration Maximum Dose
Lidocaine without 0.5-1h 5mg/kg (35mL of 1% for a 70kg adult)
Lidocaine with epi 2-6h 7mg/kg (49mL of 1% for 70kg adult)

Signs of local anesthetic overdose

  • Early signs: Perioral numbness/tingling, tinnitus
  • Severe toxicity: grand mal seizures
    * Some people are sensitive to the metabolite PABA that the ester class produces, however amides do not have this metabolite.

How to Freeze a finger

Ring blocks (aiming for the digital nerves on either side of the finger) ARE NOT necessary, you just increase the likelihood that you’re going to injure one with the needle. Instead do a single poke on the volar aspect of the MCP joint, perpendicular to the skin and inject 2-3 cc.  The freezing should go in without much resistance, too much means that the needle is either in the dermis or in the flexor tendon sheath. This should freeze the entire volar aspect of the finger and roughly to from the tip to the DIP joint on the dorsum. If you need the entire finger frozen (e.g. for a reduction), you can also inject 1-2 cc on the dorsal MCP.

The smaller the needle, the less pain is caused by the freezing (which is acidic and stings more than you’d think). Adding 1 cc of bicarb for every 10cc of lidocaine also helps reduce pain, making you a nice person.

Related Posts Plugin for WordPress, Blogger...